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It is shown that the vortex filament in background shear considered in Aref & 
Flinchem (1984) is unstable to infinitesimal disturbances, and that the numerical 
results described therein are consistent with the characteristics of the instability. 

Aref t Flinchem (1984, hereinafter referred to as AF) have presented numerical 
integrations of the nonlinear equations governing the motion of a vortex filament in 
an imposed background shear flow, within the local induction approximation. They 
find that initially localized disturbances disperse into planar undulations of the 
filament and imply that this is a result of intrinsically nonlinear aspects of soliton 
breakup. AF propose that this is a new explanation of the instability observed in the 
free-shear-layer experiments of Breidenthal (1979) and contrast their mechanism 
with earlier theories based on linear vortex-tube instability (notably that of 
Pierrehumbert & Widnall 1982, hereinafter referred to as PW). In the following we 
show that, on the contrary, the system studied by AF is unstable to a mode similar 
to the translative instability discussed in PW, and that many of the results of AF 
can be viewed as manifestations of this instability. 

We shall adhere to the notation of AF, except as otherwise specified. Consider a 
straight filamentary vortex perturbed by a sinusoidal disturbance : 

[I] = [ H] + [ i] exp (i(az-wt)). (1) 

Substituting into equation (7) of AF and linearizing, we obtain 

-iwZ = a2Cfij+ U'g, -iwij = -u2CfZ, (2% b)  

where C is a positive constant and f is the circulation about the filament. The first 
terms in (2a, b) yield the well-known self-induced rotation, and are equivalent to the 
formula given in Bachelor (1967). The second term in (2) arises from the advection 
by the external shear field Uext(y), which has shear U' = dUeXt/dyl,,, at the location 
of the undisturbed vortex. (In the notation of AF, U' = U,,/d.) In accordance with 
the right-hand rule, the circulation of the background shear has the same sign as - U' ; 
relevance to the free shear layer therefore requires - U' / f  > 0,  so that the vortices 
have circulation of the same sign as that of the background shear. (AF state that 
their calculations were carried out with CT = 1, but Aref (personal communication) 
has informed us that C f  = - 1 wa8 actually used, as is appropriate for U' > 0.) The 
eigenvalues and corresponding eigenvectors of (2) are given by 
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The system is thus unstable when - U ' / C r  > 0, as in the free shear layer. The 
unstable band of wavenumbers is 0 < a2 < - u ' / C r ,  and the maximum instability 
occurs at 

AF note that dimensional considerations require that the lengthscale of the undula- 
tions appearing on the filament be proportional to (r/U')f (as in (4)), and confirm 
that this scaling holds over a broad range of simulations. To evaluate the utility of 
the stability theory, it therefore suffices to check (4) against any one of the numerical 
simulations. The calculation exhibited in figure 7 of AF offers the cleanest possibility 
for comparison, as the integration has proceeded long enough for the wave packet 
to  have attained s fairly monochromatic form, yet not so long as to have been 
contaminated by boundary effects. For the parameters appropriate to this case, (4) 
predicts a wavelength of 0.314. This is reasonably close to the wavelength 0.26 
estimated by measuring the distance between zero crossings in figure 7. It does not 
seem likely that the difference between these values can be accounted for on the basis 
of truncation error. More probably, nonlinear effects are responsible for the modest 
shift in wavelength. Specifically, the curvature of a planar curve f(z) is given by 
(defldz2)/( 1 + (df/dz)2)!, whereas in linear theory the denominator is approximated 
by unity. Nonlinearity thus reduces the overall curvature as compared to the 
estimate used in linear theory, and therefore tends to reduce the self-induced rotation 
rate. A shorter wavelength is then required to attain the rotation rate assumed in 
linear theory, in consequence of which the most rapidly growing disturbance occurs 
at a smaller scale. 

From ( 3 b ) ,  the most unstable mode lies in a plane tilted at a 45' angle to the (2,~)- 
plane, in accord with figure 11 of AF. The mode is in this regard quite similar to 
the translative instability discussed in PW. Another feature in common with the 
translative mode is that the growth rate approaches zero linearly as a+O. 

The physical mechanism of the instability is essentially the same as that discussed 
by Moore & Saffman (1971) for the case of a vortex filament in an irrotational plane 
strain. An important difference is that the sheared case has a long-wave cutoff, 
whereas the strained case does not. This occurs for the simple reason that the position 
of a point vortex displaced from its equilibrium position in a plane strain diverges 
exponentially with time, whereas that of a point vortex in a shear flow does not. In 
the latter case, when - V/r> 0 the self-induced rotation is opposite to the 
background circulation and at  finite wavenumbers advects the vortex into regions 
of ever greater background velocity, leading to exponential growth. The cooperative 
effect of self-induced rotation and shear, combined with the fact that a rapidly 
rotating disturbance averages out the effects of the shear, leads to the finite preferred 
wavenumber. 

AF also claim that nonlinear dynamics is necessary for the creation of a sinusoidal 
wavetrain from an initially localized disturbance, and imply that the linear in- 
stability theories fail in this regard. This is not so. Consider the evolution of a field 
variablef(z, t )  in a system supporting normal modes with purely real growth rate g(a )  
having a maximum at a = a,. By means of the method of steepest descent it can be 
shown that the initial condition f(z, 0) = 6(z) leads to a long-time asymptotic form 
off(%, t )  which is proportional to 

exp [g(a,) t + ia, z ]  exp (z2/2g"(a,) t )  

( - g"(a0) t)i 
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This has the form of a sinusoidal wave with wavenumber equal to that of the most 
unstable wave, modulated by a Gaussian envelope whose width grows like ti. One 
h d s  essentially this pattern in figure 7 in AF. Similar results to (5) can be obtained 
when g is complex, and the asymptotic form is typically attained rather quickly (for 
a review of the dynamics of unstable wave packets, see Pierrehumbert 1984). 

It is nonetheless instructive to consider the detailed predictions of linear theory 
for the evolution of a soliton-like disturbance to a vortex filament. This exercise will 
help to isolate the effects of nonlinearity. Through application of Fourier analysis an 
arbitrary initial disturbance can be synthesized from eigenmodes of the form given 
in ( 3 b ) ,  whereafter the time evolution of each component is given by ( 3 a ) .  The shape 
of the filament at any subsequent time is then determined by transforming back to 
physical space. We have carried out this procedure for a localized helical initial 
disturbance described by 

The detailed shape of this disturbance is somewhat different from that of the solitons 
discussed in AF, but (6) is simpler to work with as its Fourier transform can be carried 
out analytically. The transformation back to physical space for t > 0 was effected 
by means of a numerical Fourier transform. Results for a, = -80, A = 450 (yielding 
initial scales similar to figure 7 a  of AF) are shown in figures 1 and 2. These calculations 
were carried out in an essentially unbounded z domain. 

It is evident from figure 1 that, following a brief adjustment period, the disturbance 
achieves a form qualitatively like that described by (5); the subsequent evolution 
bears a clear resemblance to the corresponding results in AF. The three-dimensional 
structure of the disturbance is illustrated in figure 2, and is characterized by a rapid 
evolution of the initially helical perturbation into the planar form characteristic of 
the most unstable eigenmode. Despite the overall similarity, there are three points 
of disparity with the nonlinear results which merit comment. The first is that the 
ultimate wavelength of the disturbance is somewhat greater in linear than in 
nonlinear theory: this has been noted and discussed above. The second is that the 
peak of the unstable wave packet in linear theory is located at the site of the initial 
disturbance, whereas in the nonlinear problem it is shifted slightly to the right. This 
suggests a relic of soliton behaviour, in that the initial disturbance in the latter case 
appears to move to the right a bit before breaking up into unstable waves. The third, 
and most striking, difference is that the initial-adjustment stage in linear theory 
involves the radiation of short helical waves to the right (figures l c  and 2b) .  This 
is readily understood in terms of ( 3 ) ,  which implies that shortwave disturbances are 
highly dispersive and have group velocities increasing in proportion to wavenumber. 
Short, helical waves with a clockwise twist propagate toward positive z, while those 
with a counterclockwise twist propagate toward negative z ; the dominant rightward 
propagation in figure 1 is a consequence of the sign of a, in the initial condition. 
Shortwave radiation of this sort is conspicuously absent in the nonlinear results. 
Soliton dynamics almost certainly plays a role here, preventing dispersion by 
balancing it against nonlinearity in the classical fashion ; note particularly that 
small-scale motions are relatively unaffected by the shear, and are thus most likely 

On the basis of the instability theory, we hazard two predictions concerning the 
behaviour of the system studied in AF. The first prediction is that the soliton form 
of the initial condition is not essential to the generation of regular planar undulations; 

\ t o  inherit some features of the soliton behaviour of the unsheared system. 
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i: 
FIQURE 1. Time evolution of the perturbed filament, as determined by the linearized equations of 
motion. The filament position is shown projected on the (z ,  x)-plane with abscissa z ranging from 
- 1 to 1 ,  and ordinate x in arbitrary units. Parameter values are U' = 800, CT = - 1 ,  m in figure 7 
of AF. Times are: (a) 0; ( b )  0.001; (c) 0.0025; (d) 0.01; (e) 0.015; cf)  0.0175. 

a localized planar perturbation with suitable tilt should serve as well. The second 
prediction is that the sharp wavelength selection and rapid growth of disturbance 
amplitude would be eliminated if the sign of the shear were reversed (yielding 
U'/T > 0). Some amplification of the initial disturbance is still expected in this case, 
even though the system is not exponentially unstable. According to (3b) Z/g is large 
for long waves, so that a small perturbation initially in the (9, 2)-plane attains large 
amplitude as it rotates into the (2, %)-plane. The effect is limited to scales a2 4 U'/Cr .  
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FIGURE 2. Perspective views corresponding to selected times in figure 1.  The view is from above 
the shear layer, with the observer looking in the downstream direction; z = 1 is located at the right 
of the figure. The oblique plane extends from (z,y) = ( -1 ,  - 1 )  to (z,y) = ( 1 , l ) .  Times are: 
(a) 0; ( b )  0.0025; (c) 0.01; (d) 0.015. 

Although the calculations reported in AF  have many fascinating features, it 
appears that they do not provide an explanation of the ‘wiggle’ instability observed 
in the experiments of Breidenthal(l979) that is distinct from the mechanisms which 
have been proposed earlier. Our claim is not that evolution described in AF is utterly 
unaffected by nonlinearity; rather, we assert that the development is best viewed in 
terms of the familiar scenario of a linear instability modified in its mature stage by 
nonlinearity. In  fact, the results of AF to some extent support the conjectures made 
in PW concerning the nonlinear fate of the translative instability, insofar as the 
filament instability discussed above can be regarded as a phenomenological model 
of the translative instability described in PW. Such an identification is suggested by 
the fact that the Stuart vortices, whose stability was considered in PW, also consist 
of (relatively) concentrated vortex cores embedded in a background shear flow. This 
model suggests that the translative instability would disappear if all the vorticity 
were concentrated in cores of small radius, leaving the background field irrotational. 
Robinson & Saffman (1982), who investigated the stability of a linear array of 
corotating vortex filaments in irrotational flow, found no mode analogous to the 
translative instability ; their finding is clearly consistent with the understanding of 
the translative instability based on the sheared-filament model. 

An important caveat must be attached to  the wavenumber selection exhibited in 
the filament instability described above. The sharp shortwave cutoff derives from the 
quadratic growth of the self-induced rotation with wavenumber characteristic of the 
local induction approximation. Even within the realm of validity of the aamentary 
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approximation, this behaviour is not correct, as the ' constant ' C in reality depends 
logarithmically on wavenumber (see e.g. equation (4.12)in Moore & Saffman 1971). 
Moreover, it is known that the filamentary approximation yie€ds spurious results for 
wavelengths comparable to the core radius (see e.g. Tsai & Widnall 1976). Thus, it  
should not be surprising that the inviscid translative instability in PW does not 
exhibit the sharp shortwave cutoff seen in the filamentary model. Given the relatively 
shortwave nature of the observed instability, we suggest that the shortwave 
behaviour in the model of PW is more relevant than that of the filament model. This 
leaves open the question of the physical mechanism responsible for wavenumber 
selection in the experiments, though the filamentary model suggests that baaic state 
flows with more concentrated cores and stronger background shears would yield 
sharper wavenumber selection. 
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